Binary Classification Tree with Tuned Observation-based Clustering
نویسندگان
چکیده
There are several approaches for handling multiclass classification. Aside from one-against-one (OAO) and one-against-all (OAA), hierarchical classification technique is also commonly used. A binary classification tree is a hierarchical classification structure that breaks down a k-class problem into binary sub-problems, each solved by a binary classifier. In each node, a set of classes is divided into two subsets. A good class partition should be able to group similar classes together. Many algorithms measure similarity in term of distance between class centroids. Classes are grouped together by a clustering algorithm when distances between their centroids are small. In this paper, we present a binary classification tree with tuned observation-based clustering (BCT-TOB) that finds a class partition by performing clustering on observations instead of class centroids. A merging step is introduced to merge any insignificant class split. The experiment shows that performance of BCT-TOB is comparable to other algorithms. Keywords—multiclass classification, hierarchical classification, binary classification tree, clustering, observation-based clustering
منابع مشابه
Classification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملEvaluation of Distance Measures for Multi-class Classification in Binary SVM Decision Tree
Multi-class classification can often be constructed as a generalization of binary classification. The approach that we use for solving this kind of classification problem is SVM based Binary Decision Tree architecture (SVM-BDT). It takes advantage of both the efficient computation of the decision tree architecture and the high classification accuracy of SVMs. The hierarchy of binary decision su...
متن کاملProbabilistic Word Classification Based on Context-Sensitive Binary Tree Method
Corpus-based statistical-oriented Chinese word classification can be regarded as a fundamental step for automatic or non-automatic, monolingual natural processing system. Word classification can solve the problems of data sparseness and have far fewer parameters. So far, much r:,la~v~ work about word classification has been done. All the work is based on some similarity metrics. We use average ...
متن کاملAssessing Behavioral Patterns of Motorcyclists Based on Traffic Control Device at City Intersections by Classification Tree Algorithm
According to the forensic statistics, in Iran, 26 percent of those killed in traffic accidents are motorcyclists in recent years. Thus, it is necessary to investigate the causes of motorcycle accidents because of the high number of motorcyclist casualties. Motorcyclists' dangerous behaviors are among the causes of events that are discussed in this study. Traffic signs have the important role of...
متن کاملMulti-class Classification Using Support Vector Machines in Binary Tree Architecture
This paper presents architecture of Support Vector Machine classifiers arranged in a binary tree structure for solving multi-class classification problems with increased efficiency. The proposed SVM based Binary Tree Architecture (SVM-BTA) takes advantage of both the efficient computation of the tree architecture and the high classification accuracy of SVMs. Clustering algorithm is used to conv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012